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Abstract. We answer an open question from a previous inves-
tigation related to numerical semigroups. For integers k,on > 2
we prove the existence of a numerical semigroup S and a relative
ideal I such that the size of the minimal generating set for I is k,
the size of the minimal generating set for the dual, S—1, isn, and
the size of the minimal generating for the ideal sum I + (§—1) s
nk. Further, we outline a method for proving that S is symmetric
and S+ (S — I) = S\{0}. The primary tool in this investigation
is the Apery set of S relative to the maultiplicity of S.

Introduction. Let S be a numerical semigroup and let I be a relative
ideal of S. Let S — I denote the dual of I, that is, S — ] — {z€Z|
2+ 1 C S} We use the notation us(-) to represent the size of the minimal
generating set for a relative ideal of §. If the minimal generating set for
I'is {a1,...,a;} and the minimal generating set for § — I is {by,...,by,},
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then the set {a; +b;]l < i < kand 1 < j < n} is a generating set for
the ideal sum I + (S — I) but it may not be a minimal generating set.
Thus, the inequality us(I)ps(S —I) = ps(I + (S —I)) always holds. When
ps(Dps(S — 1) = ps(I + (S — 1)) , we refer to the pair (5,I) as a k x n
brick. When I + (S — I) = S\{0}, we refer to (S,) as a k x n perfect brick
(see (5, 6], and [7] for background). It is known (see [5]) that if ws(I) =1,
then ps(S — I) = 1 and (S, I) is a trivial brick. Because of this, we always
assume that ps(l) > 2.

From [6] we know there exists an infinite family of 2 x 2 perfect bricks.
At the end of [7] it is conjectured that there exist & x n perfect bricks for
all k,n > 2. In this paper we confirm this conjecture by constructing a
family of perfect bricks of every size k x n for k,n > 2. We also compute
the Frobenius number for each member of this inifinite family and outline a
proof that each one is symmetric.

In Section 1 we introduce the needed notation and define the semigroup
S and relative ideal I for given values of k = ug(l) and n = pug(S —I). The
multiplicity of S, m(S), is the smallest positive element of S. The analysis
in Section 2 focuses on the Apery set of S relative to m(S), that is, the set
Ap(S,m(8)) = {s € S|s —m(S) ¢ S}. Because this is the only Apery set of
S that we will use in this investigation, we will henceforth refer to this set
as “the Apery set of 5”7 and denote it by Ap(S). Knowing which elements
are in Ap(S) will allow us to find the minimial generating set of 5 — I, thus
proving that (S, I) is a k x n perfect brick. We finish by using the Apery set
to argue that S is symmetric. In Section 3 we describe an infinite collection
of similar families as well as present a family of k x n perfect bricks which
are not symmetric for k > 2 and n > 3.

A basic understanding of the concepts and notation related to numer-
ical semigroups and relative ideals is assumed in this paper. Suggested
background reading for numerical semigroups and their connections to com-
mutative algebra include [2], [4] and [10]. The original motivation for the
investigation in this paper comes from the study of torsion in tensor prod-
ucts of modules over certain types of rings. The specifics of the relationship
between this topic and numerical semigroups is detailed in [5]. Details con-
cerning the investigation of torsion in tensor products can be found in 1],
[3], [8] and [9].



1. Background, Definitions and Notation

(1.1) Notation: The following notation will be used throughout this inves-
tigation.

(v)

(vi)

(vii)

Let k and 7 be integers such that k,n > 2.
Fori=0,1,...,n—1,let a; = 3(n+1i) — 1.
For integers z; < 29, let [21, z9] denote the set {t€Z|z <t < 2).

Fori=0,1,...,n—1, let
Ci = [(2k ~1)a;, (2k — L)a; + (k - 1)].

For positive integers s1, sy, .. ., sp With g.c.d.(s1,82,...,8p) = 1,
let § =< s1,s9,..., §p > represent the numerical semigroup
with minimal generating set {s,ss, ..., sp}. That is,
S={z18; +a089 + - - + xpsy} where z1, 29, .. ve'Bp
are non-negative integers.

For the remaining items, let S be a numerical semigroup.

For integers by, by, ..., by, let T = (b, bs, ... 2 b))
represent the relative ideal of § with generating set
{b1.b2,...,bp}. That is, I = {by, b, B

For a relative ideal I, we represent the dual of I in S by § - 1.
Thatis, S—I={zeZ|z+1ICS}.

It is well known that given a relative ideal I of S , its minimal
generating set is unique. We will denote the number
of elements in the minimal generating set for I by pg([).

We can now define the numerical semigroup S and relative ideal J which
form a k x n perfect brick.

(1.2) Definition: For a given pair of integers k& and n with k,n > 2, define

and

S =< CUUCIUH.UC”._I >

I=(0,1,...,k—1).



(1.3) Note: (a) Because it will come up several times in this investigation,
we note that a; — ag = 3i for i = 0,1,...,n — 1. Also note that

m(S) = (2k — L}ag = (2k — 1)(3n — 1).

(b) The set CoUC1U...UCy 1 is the minimal generating set for S. To see
this note that the largest element in this set is (2k — 1)an—1 + (k —1). Now,

2m(8) — ((2k — V)an—1 + (K — 1))
= 2(2k — )ag — ((2k — )an-1 + (K — 1))
_ 2(2k — 1)(3n—1) — (2k — 1)(6n —4) — (k+1)
= (2k —1)(6n — 2 —6n+4) — (k+1)
= (2k-1)2) - (k+1)
=3k-1
> 0.

We conclude that all elements of CoUCyU...UCp_1 are less than 2m(S5).

(1.4) Example: Let k =3 and n = 4. Then
S =< 55,56,57,70,71, 72,85, 86, 87,100,101,102 > and I = (0,1,2).

Tt is easy to check that S — I = (55,70,85,100), ps(I + (S —I)) =12, and
I+ (S —1I)=8\{0}. Thus (S,I) forms a 3 x 4 perfect brick.

For a given k and n, the numerical semigroup S has a minimal generating
set consisting of n intervals of consecutive integers consisting of k integers
each. Further, I has [0,k — 1] as its minimal generating set. In general,
a numerical semigroup generated by intervals of consecutive integers and a
relative ideal generated by an interval do not form a brick. As we will see
in the analysis that follows, the additional conditions we have imposed on
S and I ensure that the pair (S, I) always forms a k x n perfect brick.

For a specific k and n, it is easy to check that the pair defined in (1.3)
is a k x n perfect brick. The challenge comes in developing a general proof
that is valid for all values of k and n. The approach we will take involves
establishing which elements of S are in the Apery set of S. Recall that for
this investigation, we define the Apery set of S to be

Ap(S) = {s € S|s —m(S) ¢ S}.

Equivalently, Ap(S) consists of the smallest elements of S from each con-
gruence class modulo m(S). Knowing the elements of Ap(S) will benefit us
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in two ways.

1. By the way S and I are defined, we know
(2k — 1)ay, (2k - aq,..., (2k — Dan_;

are members of the minimal generating set for S — I. To see this note that
(2k —1)a;+j € Sfor 0 <i < nand 0 < Jj £ k — 1. By definition,
(2k — 1)a; € S — I. Further, recall from (1.3) that (2k — 1)an—; < 2m(S).
As a result, all of these elements are members of the minimal generating set
for § — 1.

Now, if 2 € S\ Ap(S), then we know that 2 — m(S) € S. As a result,
is not a member of the minimal generating set for S — I since m(S)e S—1.
We conclude that if # is a member of the minimal generating set for § — I,
then z € Ap(S). Knowing the elements of Ap(S) allows us to narrow the
search for members of this generating set. In the end we will discover
that the minimal generating set for S — I contains no elements other than
(2k — L)ag, (2k - 1)ay, ..., (2k — 1)a,—; and hence ug(S—I)=n.

2. We will outline a method by which we can confirm that S is symmetric.
It is known (see [11]) that S is symmetric if and only if Maz(Ap(S)) —z ¢
Ap(S) for all z € Ap(S).

2. Analysis of Ap(S) and the Minimal Generating Set of S — I

We now establish which elements of S are in Ap(S) and determine which
ones are elements of the minimal generating set of S—1I. The process involves
looking at how a given element of S can be expressed with respect to the
minimal generating set.

Let To = {0} and for j > 1 let T} = {z € S| =g1+9g2+---+g;} where
91,92, ..., 9; are elements of the minimal generating set of S. Note that

Lc U e++o

0<iy,eeiy <n—1

We will examine Tp, T}, Th, T3, Ty and discover that Ap(S) CTHhuThuT U
T UTy.

To help us with our bookkeeping we will partition the congruence classes
modulo m(S) as follows:

P =i(2k — 1)+ [0,2k — 2]

5



for 0 < i < 3n — 2. That is, each P; consists of 2k — 1 consecutive integers
and |J P; = [0, m(S) — 1].

Analysis of T and T

It is clear that Ty = CoUC1 U ... U Ch—1. Thus, a typical element of T3
looks like z = (2k—1)a,;+£whereOSign—landOSISk—l. By
(1.3) we know z — m(S) is the congruence class representative for 2 modulo
m(S). Further,

x —m(S) (2k — L)a; + 1 — (2k — L)ag
(2k — 1){(a; — ap) +1

(2% — 1)(34) + L.

As i varies from 0 to n — 1 and [ varies from 0 to k — 1, we see that
corresponds to the congruence classes

3i(2k — 1)+ [0,k — 1] C Py;.

As a result, the elements of Ap(S) along with the obvious element, namely
0, are
[1,k = 1] + m(S)

and
3i(2k — 1) + [0,k — 1] + m(S),

where 1 <i<n-— L
Because the integers
(2k — ag + k, (2k — V)ay + k, ... (2k = 1)an_1 + k

are not in S, it is clear that the only elements of Ty U Ty that are in S — I
are
(2k — 1)ag, (2k — 1)ay, - - -, (2k — L)ag-1.

As we saw above, these elements are in the minimal generating set for §—I.

Finally note that Ty U T} consists of the elements of S that are less than
2m(S).



Before proceeding with the analysis of T3, we offer the following lemmas
that will be useful in the analysis that follows.

(2.1) Lemma: Let x € S such that z = (2k—1)a; +-- +(2k~1)a;, +1 where
0<id1,...,55<n—-1and 0 <! < j(k—1). Let m > 0. i+ +i; > mn,
then z > (j +m)m(S).

Proof: Assume i; +--- + i; = mn. Then

x — (j +m)m(S)

(2‘[‘3 - 1)(0‘1"-1 preeng a'ij) +i-(+ 'm’)m(‘s')

(2k — 1)(ai;, + -+ ai;) +1 = (F +m)(2k — 1)ag
(2k - 1)(aiy +---+ ai; — (§ +m)ag) +1

= (2k—1)(3i1+ - + 3i; — mag) + 1

(2k = )8+ -+ i) —m(3n— 1)) + 1

(2k = 1)(3(ir + -+ +1i; — mn) +m) +1

0.

(T |

vl

Therefore, = > (j +m)m(S).

(2.2) Lemma: Let z € S such that z = (2k — Dai + (2k — Dag, + - +
(2k —1)a;; +1 where 0 < i1,...,i; <n—land 0< [ < (7 —1)(k—1). Then
x is not a member of the minimal generating set for S — .

Proof: Write lasl =1, + 1,4+ -+ + l;—1 where 0 < o, ... ljog <k-—1.
Then,

T = ((2k—1)ai, +11)+((2k—1)ai, +1lz)+- - +((2k-1)ay,_, +£j—])+(2k—1)a£j.
Now, (2k—-1)a;,, +Im € C;,, form =1,2,... yJ—1,s0x = (2k— l)a,:j +s

for some s € S. Since (2k — L)a;; € §— I, we see that z is not a member of
the minimal generating set for S — I.

Analysis of T;

By definition we see that

= |J a+c;

0<ij<n-1



Therefore, a typical element of T looks like
z = (2k — D)a;, + b, + 2k — L)ag, + by,
where 0 < 41,42 <n —1and 0 < l;,l;, <k —1. Rewriting we have
z = (2k — 1)(a;, +ai,) +1,

where 0 < 1 < 2k — 2. We want to reduce this element modulo m(S) =
(2k—1)ag to discover to which congruence class modulo m(S) it corresponds.
Since = > 2m(S), we start by substracting 2m(S) to obtain

z—2m(S) = (2k—1)(ay +ai,) +1—2(2k - 1)ao
(2k — 1)(ai, + as, — 2a0) +1

(2k — 1)(3iy + 3ig) +1

(2k — 1)(3(21 + i2)) + L.

1l

We now examine two cases based upon the value of i1 + ip. In case (1)
we let 0 < iy +42 <n — 1, and in case (2) we let n <i3 +1ip <2n - 2.

In case (1) we have

(2k —1)(3(i1 +142)) +1 < (2k-1)(3(n—1)) +1
< (2k—1)(3n-3)+(2k - 2)
= (2k-1)3n—-1-2)+(2k—-2)
— (2k—1)Bn—-1)—2(2%k — 1)+ (2k - 2)
= m(S) -2k
< m(S).

Thus « is in the congruence class corresponding to (2k — 1)(3(i1 + i2)) + L.
As i + i varies from 0 to n — 1 and [ varies from 0 to 2k — 2, we see that
a corresponds to the congruence classes

3(i1 +42)(2k — 1) + [0, 2k — 2] = Py, 44)-
Recalling the analysis of Ty and 17, we see that
3(iy + i2)(2k — 1) + [k, 2k — 2] + 2m(S)

are elements of Ap(S) where 0 < i +i2 <n— 1L

In case (2) we know x > 3m(S) by (2.1), so we have to subtract 3m(S)
to find the congruence class to which z corresponds. Specifically,



x — 3m(S) (2k — 1)(as; + ai,) +1 — 3(2k — 1ag
(2k — 1)(as, + ai, — 3ap) +1
(2k — 1)(381 + 342 — (3n — 1)) +

= (2k-1)B@E1+iz—n)+1)+1

i

Il

Furthermore,

(2k — 1)(3(i1 +iz —n) + 1) +1 (2k —1)(3(2n — 2 — ) + 1) +
(2k - 1)(3(n —2) + 1) + (2k — 2)
(2k = 1)(3n - 5) + (2k — 2)

= (2k-1)Bn—-1-4)+(2k-2)
m(S) — 6k +2 '

m(S).

[ IA IA

Il

Thus we know z is in the congruence class corresponding to
(2k = 1)(3(i1 +i2 —n) + 1) + L.

As i1 + iy varies from n to 2n — 2 and [ varies from 0 to 2k — 2, we see that
x corresponds to the congruence classes

(3(i1 +i2 —n) + 1)(2k — 1) + [0, 2k — 2] = Py(iy 4ig—n)+1-
We conclude that |
(B(i1 +io —n) +1)(2k — 1) + [0,2k — 2] + 3m(S)
are elements of Ap(S) where n < iy + iy < 2n — 2.

We now address the question of which elements of Ty M Ap(S) are in
the minimal generating set of S — I. Recall that we need only examine the
elements of Ap(S).

For 0 <i; +1i3 <n — 1 we have
3(i1 +42)(2k — 1) + [k,2k — 2] + 2m(8) C Ap(S).

None of these elements are in S — I because the next largest integer is
3(i1 +2)(2k — 1)+ (2k — 1) +2m(8) = (3(i1 +42) +1)(2k — 1) + 2m(S) which
is not in §. To see this note that (3(iy + iz) + 1)(2k — 1) +2m(S) is smaller
than 3m(S) and corresponds to the congruence class (3(i1+12)+1){(2k—1) €
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P33 +ip)+1- For 0 <41 +ip < n—2, the analysis above shows that the small-
est representative of this congruence class in S is greater than 3m(S). For
iy + 142 = n — 1, this element corresponds to a congruence class in Pyp—2. As
we will see later, the smallest representative of this congruence class in S is
also greater than 3m(S). Thus, (3(1 +1i2) +1)(2k —1) +2m(S) ¢ S and we
conclude that none of the elements in 3(i1 +142)(2k — 1) + [k, 2k — 2] +2m(S)
are in 5§ —I.

Next note that for n < i + iz < 2n — 2 we have
(3(iy + iz — n) + 1)(2k — 1) + [0, 2k — 2] 4 3m(S) C Ap(S).
We first consider the clements
(3(i1 + 42 — ) + 1)(2k — 1) + [k, 2k — 2] + 3m(5).

None of these elements are in S — I because the next largest integer is
(3(i1+ig—n)+1)(2k—1)+(2k—-1)+3m(S) = (3(314+ip—n)+2)(2k—1)+3m(S)
which is not in S. To see this note that (3(i; +i2 —n) +2)(2k — 1) + 3m(S5)
is smaller than 4m(S) and corresponds to the congruence class (3(i1 + 42 —
n)+2)(2k — 1) € Py, 4ip—n)+2- But, as we will see in the analysis of T3 and
Ty, the smallest representative of this congruence class in S is greater than
4m(S). Thus, (3(iy +iz —n) +2)(2k — 1) +3m(S) ¢ S and we conclude that
none of the elements in (3(iy + 4o —n) + 1)(2k — 1)} + [0, 2k — 2] 4+ 3m(S) are
inS—1.

The only elements of Ap(S) in T3 left to consider are
(3(iy + iz — n) + 1)(2k — 1) + [0,k — 1] + 3m(S5).

It is clear that these elements are in S—I. Let o be an element of S in this
interval, Recall that = can be written in the form z = (2k — 1)(as; +ai,) +1
where n < iy +1ip < 2n—2and 0 < < k — 1. From (2.2), we conclude
that z is not a member of the minimal generating for S — I and therefore
T contains no elements that are in the minimal generating set for S — 1.

Before moving on to the analysis of T3 and Tj, it is helpful to re-
cap what we know. We have identified all of the elements of Ap(S) in
the interval [m(S),2m(S)] and in the interval [2m(S),3m(S)]. These ele-
ments correspond precisely to the congruence classes in Py, P3, Fs, . . ., Pyy_3.
We have also established some of the elements of Ap(S) in the interval
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[3m(S),4m(S)]. These elements correspond precisely to the congruence
classes in Py, Py, ..., Py,_s. At this point we have not encountered any ele-
ments of § that correspond to the congruence classes in Py, P5, Pk, ..., Piu_y.
Further, we have not encountered any elements of S that correspond to the
congruence classes in Py, _o.

Analysis of T}
By definition we see that

Ty C U &Gi+e; 40

0<iy i i3<n—1
Therefore, a typical element of T3 looks like
& =(2k — 1)a;, + 11 + (2k — 1)a;, + lp + (2k — 1)a;, + 13,
where 0 < iy,49,é3 <n—1and 0 <h,l i3 <k-1. Rewriting we have
T = (2k — 1)(ai, + ai, + az,) +1,

where 0 < | < 3k — 3. We reduce z modulo m(S) to discover to which
congruence class it corresponds. Since x > 3m(S ) we start by subtracting
3m(S) from z. As in the analysis of T), one can show that

T = 3m(S) = (2k — 1)(3(4y + iz + i) + L.

We consider the following cases based upon the value of i1 + iy + is:

(1) 0<ii+ia+izs<n-—1
(2) n<ig+ip4i3<2n -2
(3) i1 +is+i3=2n—1

(4) 2n5é1+i2+i3§3n—3‘

For case (1), one can show that (2k — 1)(3(i1 +iz+13)) +1 < m(S). Thus
we know that z is in the congruence class corresponding to (2k — 1)(3(¢; +
t2 +1i3)) + 1. As 4y + iy + 43 varies from 0 to n — 1 and [ varies from 0 to
3k — 3, we see that ¢ corresponds to the congruence classes

361 +iz +ig)(2k — 1)+ ((0,2k — 2 U 2k — 1, (2K — 1) + (k — 2)]),
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which are contained in Py, yiy4ig) Y Py vinyig)+1-

Reviewing the analysis of Ty, T} and Tz, we see that the congruence
classes in the above collection that we have not yet encountered are

(3n —2)(2k — 1) + [0,k — 2] C Psp-2.
That is,
(3n —2)(2k — 1) + [0,k — 2] +3m(S) € Ap(S).
For cases (2), (3), and (4), we know x > 4m(S) by (2.1). One can show that

z —4m(S) = (2k - 1)(3(iy + iz + i3 —n) + 1) + 1.

For case (2), we have (2k — 1)(3(i1 + 42 + i3 — n) + 1) +1 < m(S). As
i + 19 + i3 varies from n to 2n — 2 and [ varies from 0 to 3k — 3, we see that
x corresponds to the congruence classes

(3(iy +i2 + i3 —n)+1)(2k - 1) + ([0,2k -2 U2k —1,(2k — 1) + (k — 2],
which are contained in Py, 4 4iz—n)+1 Y Rt B
We see that the congruence classes that we have not yet encountered are
(3(31 +iz+i3—n)+1)(2k—1)+[2k—1,(2k— 1)+ (k—2)] C Pyiytioiz—n)+2-
We conclude that
(3(i1 +iz+iz3 —n) +1)(2k — 1) + 2k—1,(2k—1)+ (k—2)] + 4m(S)
are elements of Ap(S), where n < 43 +1i2 +i3 < 2n — 2.

Case (3) separates into two subcases based upon the value of [:
(a) 0<1<2k—2and (b)2k—1<I<3k-3.

Ifiy +ip+iz=2n—1and 0 <1 <2k -2, then z—4m(S) < m(S) and x
is in the congruence class corresponding to (2k —1)(3n — 2) +1. As [ varies
from 0 to 2k — 2, we see that @ corresponds to the congruence classes

(3n — 2)(2k — 1) + [0,2k — 2] = P32

The congruence classes in this collection that we have not yet encoun-
tered are
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(Bn—2)(2k—1)+ [k —1,2k — 2] C Py,_o.
That is,

(Bn —2)(2k — 1) + [k — 1,2k — 2] + 4m(S) C Ap(S).

Ifiy+io+i3 =2n—1and 2k — 1 <1 < 3k — 3, one can show that
& —5m(S) < m(S) <z —4m(S) so that z is in the congruence class corre-
sponding to (2k — 1)(~1) +1. As [ varies from 2k — 1 to 3k — 3, we see that
x corresponds to the congruence classes

0,k—2) C B

Thus, we know that there are elements in the interval [m(S),2m(S9)] that
correspond to these congurence classes.

In case (4), we know & > 5m(S) by (2.1). One can show that z—5m(S5) =
(2k = 1)(3(i1 +i2+i3 —2n)+2) +1 < m(S) so that & is in the congruence
class corresponding to (2k —1)(3(i1 +ig-+i3 —2n)+2)+1. Asij+is+iy varies
from 2n to 3n — 3 and I varies from 0 to 3k — 3, we see that z corresponds
to the congruence classes

(3(é1 + 42 +143 — 2n) +2)(2k — 1) + ([0, 2k — 2] U [2k — 1, (2k — 1) + (k — 2)]),

which are contained in Py(;, 4,44, —an)12 U Pytiy+ip4i3-2n)43-

We see that the congruence classes in the above collection that we have
not yet encountered are

(3(i1 + 49 + 43 — 2n) + 2)(2k — )+ [k~1,2k - 2] C P3(¢1+{2+i3—2ﬂ.)+2.

Thus, (3(i1 + ip + 43 — 2n) + 2)(2k — 1) + [k — 1,2k — 2] + 5m(S) are
elements of Ap(S), where 2n < i, + iy + i3 < 3n — 3.

We now review the elements of T3 N Ap(S) to deteremine which of them
are in the minimal generating set for § — I.

In the set [3m(S), 4m(S)], the elements of T3 N Ap(S) are
(Bn—2)2k—1)+[0,k—2] + 3m(S).
The next largest integer is (3n — 2)(2k — 1) + (k — 1) + 3m(.S) which is

smaller than 4m(S) and corresponds to the congruence class (3n — 2)(2k —
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1) + (k —1). But the smallest element of S that corresponds to this congru-
ence class is greater than 4m(S). Thus, (3n—2)(2k—1)+(k—1)+3m(S) & S.
We conclude that none of these elements are in 5 — I.

In the set [4m(S),5m(S)], the elements of T3 N Ap(S) are
(3i 4+ 2)(2k — 1) + [0,k — 2] + 4m(S) for i = 0,1,...,n — 2

and
(3n —2)(2k — 1) + [k — 1,2k — 2] 4 4m(S5).

None of the elements in (3i+2)(2k — 1)+ [0,k — 2] +4m(S) are in S — 1
because the next largest integer is (3i +2)(2k — 1) + (k —1) +-4m(S) which is
smaller than 5m(S) and corresponds to the congruence class (3i+2)(2k—1)+
(k — 1). But the smallest element of S that corresponds to this congruence
class is greater than 5m(S). Thus, (3i +2)(2k — 1) + (k — 1) +4m(S5) ¢ S.

Now, the elements in (3n — 2)(2k — 1) + [k — 1,2k — 2] + 4m(S) are in
S — I since the next k integers are Cy + 4m(S) C S. Let 2 be an element of
S in this interval. Recall from case (3) that 2 can be written in the form

&= (zk EE 1)(6”%'1 +G-£2 + a'?'s) +I:

where i; +i2+ i3 =2n—1and k—1 <! < 2k —2. From (2.2), we conclude
that z is not a member of the minimal generating for S — I.

In the set [5m(S),6m(S)], the elements of Ap(S) are (3i + 2)(2k — 1) +
[k—1,2k—2]+5m(S) for i = 0,1,...,n—3. These elements are in 5—1. To
see this we note that the next k integers are in S since they are larger than
their representatives in Ap(S) which are identified in the analysis of Ty and
Ty. Let & be an element of S in this interval. Recall that x can be written in
the form z = (2k —1)(ai, + @i, +as,) +1 where 2n < 43 +iz+i3 < 3n—3 and
k—1<1<2k—2. From (2.2), we conclude that z is not a member of the
minimal generating set for S —I. Thus, there are no elements of T3 N Ap(S)
in the minimal generating set of S —I.

To recap, in Ty UTy U Tz UTs we have elements of Ap(S) corresponding
to every congruence class except those in the interval

(3n—4)(2k - 1) + [k — 1,2k — 2] C P34

14



Analysis of T}
By definition we sce that

Ty

M

U Ci, + Ci, + Cyy + Ci,.

0<iy,ind3,44<n—1
Thus, a typical element of Ty can be written in the form
z=(2k — Va;, +1; + (2k — Vai, +1s + (2k — 1)&53 + Iz + (2k — Lag, + Iy,

where 0 < 4y,dy, 43,44 <n—1and 0 < Iy, by, I3, 14 < k — 1. Rewriting z we
have
T = (2k - 1)(a;, + @iy + @iy + ai,) + 1,

where 0 < [ < 4k — 4. We know z > 4m(S) by (2.1). One can show that
T—4m(S) = (2k—1)(3(i1+i2+143+144)) +1. The cases we need to address to
discover the remaining elements in Ap(S) are (1) 0 < iy +ig+ig+ig < n—1,
(2) n < iy +ig iy < 2n — 2, (3) 1+ i+ i3+ = 2n — 1, and
(4) 2n<i1+ig+i3+1i4 <3n—2.

In case (1), one can show that (2k — 1)(3(i1 +ia +i3+i4)) +1 < m(S) so
that x is in the congruence class corresponding to (2k — 1)}(3(i1 + ia + i3 +
i4)) + 1. As iy + 49 + i3 + 44 varies from 0 to 1 — 1 and [ varies from 0 to
4k — 4, we see that x corresponds to the congruence classes

8(i1 +2 + i3+ ia)(2k — 1) + 0,2k — 2 U [2k — 1, (2k — 1) + (2% — 3)],
which are contained in P3(§1+3'2+5_3+,;4) U P3(i1+53+9f3+i4)+1-

We have already encountered elements in the interval [0,4m(S)] that
correspond to these congruence classes. Thus, none of these elements are in

Ap(S).

In case (2), z > 5m(S) by (2.1). It is easy to verify that x — 5m(S) =
(2k—1)(3(i1+19 +i3+ia—n)+1)+l < m(S). Thus z is in the congruence class
corresponding to (2k—1)(3(i1+iz+ig+ig—n)+1)+1. Now i; +ig+is+i4 varies
from n to 2n—2 and [ varies from 0 to 4k —4. Note that for i1 +is+i3+iy =
n+1t, where 0 < ¢t < n — 3, we know that z — 5m(S) corresponds to
congruence classes in P31 U Pyyo, all of which we have accounted for in
previous analyses. Thus we look at the case 1 Fia+ i3 +ig = 2n — 2. We
see that = corresponds to the congruence classes



(3n — 5)(2k — 1) + [0, 2k — 2] U [2k — 1, (2k — 1) + (2k — 3)] C P3n—5U Psn_s.

The congruence classes in the above collection that we have not yet encoun-
tered are
(3n —4)(2k — 1) + [k — 1,2k - 3].

Thus we have
(3n — 4)(2k — 1) + [k — 1,2k — 3] + 5m(S) C Ap(S).

The only congruence class not already accounted for is (3n — 4)(2k — 1) +
(2k — 2).

In case (3), we see that x corresponds to congruence classes in Py —2U Py
following the same analysis that we conducted for T3 in case (3) where
i1 + i +ig = 2n — 1. Since we have already accounted for all these congru-
ence classes, we see that this case yields nothing new.

In case (4), = > 6m(S) by (2.1). One can show that = — 6m(S) =
(2k — 1)(3(i1 + 2 + i3 + ia — 2n) 4+ 2) + 1 < m(S) so that z is in the
congruence class corresponding to (2k — 1)(3(éy +i2 + i3+ 14 — 2n) +2) + L.
Now iy + ig + 43 + 4 varies from 2n to 3n — 2 and [ varies from 0 to 4k — 4.
In particular we look at the case i1 + 42 + 13 + 14 = 3n — 2. ‘We see that x

corresponds to the congruence classes
(3n —4)(2k — 1) +[0,2k — 2] U [2k — 1, (2k — 1) + (2K — 3)] € Psn—qU P3y—3.

When | = 2k — 2 we see that z corresponds to the congruence class
(3n — 4)(2k — 1) + (2k — 2). We conclude that the largest element of Ap(S)
is (3n —4)(2k — 1) + (2k — 2) + 6m(S5).

To complete the analysis of S — I, we look at the elements of Ty N Ap(S).
In the interval [5m(S), 6m(S)], we have the elements

(3n — 4)(2k — 1) + [k — 1,2k — 3] + 5m(S).

None of these elements are in S — I because the next integer, (3n —4)(2k —
1) + (2k — 2) + 5m(S), corresponds to the congruence class (3n — 4)(2k —
1) + (2k — 2), and the smallest representative of this congruence class is
(3n—4)(2k—1)-+(2k—2)+6m(S). Thus, (3n—4)(2k—1)+(2k—2)+5m(S) ¢
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Finally we consider (3n —4)(2k — 1) + (2k —2) + 6m(S), which is clearly
in § — [ since it is the largest element in Ap(S) and the next k — 1 integers
must therefore be in S. Recall that z = (3n —4)(2k — 1) + (2k — 2) +6m(S)
can be written as = (2k — 1)(ai, + as, + aiy + a5,) + [ where [ = 2k — 2.
By (2.2), we conclude that (3n —4)(2k — 1) + (2k — 2) + 6m(S) is not in the
minimal generating set of S — T.

The final conclusion of this analysis is that
S =I=((2k —1)ao, (2k - L)ay,..., (2k — L)an_;).

Thus, CoUCL1U...UCy_y is a generating set for I + (S — I). By (1.3) we
know this generating set is minimal. Consequently, ns(I+(S—-1)=kn=
#s(I)ps(S —I) and (S, 1) is a k x n perfect brick.

We note in passing that the Frobenius number of S, that is, the largest
integer not contained in 8, is Maz(Ap(S)) — m(S) = (3n — H(2k — 1) +
(2k — 2) + bm(S).

(2.3) Example: Recall that for k = 3 and n = 4 we have
S =< 55,56,57,70,71,72,85,86,87,100,101,102 > and I = (0,1,2).

It is easy to check that the largest element of Ap(S) is (3n — 4)(2k — 1) +
(2k — 2) + 6m(S) = 374.

Symmetry

Verifying that S is symmetric is now a simple matter of performing a
finite number of subtractions. It is known from [11] (among others) that a
numerical semigroup S is symmetric if and only if maz(Ap(S)) —x € Ap(S)
for all z € Ap(S). Since we know the elements of Ap(S), we just have to
check these subtractions. The details are left to the reader, but we offer the
following example of how to do these checks.

(2.4) Example: We know that 2(2k —1) + [k—1,2k—2] +5m(S) C Ap(S).

Let x € 2(2k—1)+[k—1,2k - 2] +5m(S). That is, z = 2(2k — 1)+1+5m(S)
where k — 1 <1 < 2k — 2. Subtracting from max{Ap(S)), we get
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max(Ap(S)) — =
= ((3n — 4)(2k — 1) + (2k — 2) + 6m(S)) — (2(2k — 1) — 1 — 5m(S))
= (3n —6)(2k — 1) + (2k — 2) — I + m(S).
Now, 0<2k—-2-1l<k-1so
maz(Ap(S)) — z € (3n — 6)(2k — 1) + [0,k — 1] + m(S).
The analysis of T} demonstrated that

(3n — 6)(2k — 1) + [0,k — 1] + m(S) C Ap(S).

3. Other %k x n Pefect Bricks

We conjecture that the infinite family of perfect bricks defined in (1.2)
is, in fact, just one family in an infinite collection of such families. Indeed,
let k, n, and j be integers with k,n > 2 and j > 1. Define

mk,n,j) = (352 +6j+1)(k—2) + (n —2)((35% +34)(k —2) + (35% + 55 +1))

+(35% + 8j + 4),
and S to be the numerical semigroup with generating set

2n-1

| m(k.i,5) + [0,k - 1.

1=

We conjecture that S admits a k x n perfect brick with
I=(0,1,...,k=1)and §—I = (m(k,n,j),m(k,n+1,5),...,m(k,2n—1, j)).
We further conjecture that all such numerical semigroups are symmetric.
(3.1) Example: Let k=3, n =15 and j = 3. Then

S =< 338,339,340,417,418,419, 4196, 497,498, 575, 576, 577, 654, 655,656 > .

If we define I = (0,1,2), it can be verified that (S,I) forms a 3 x 5 perfect
brick.
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The family defined in (1.2) results by letting j = 1. Investigations of
the family that results for j = 2 indicate that an analysis similar to the one
in Section 2 will confirm that all such numerical semigroups admit & x n
perfect bricks and are symmetric. An attempt to conduct such an analysis
for all values of j proved too complex to manage but checks of many of the
semigroups in these families support our conjecture.

In addition to these (conjectured) families of perfect bricks, the following
family is offered by Jeff Rushall:

Let k and n be integers with k > 2 and n > 3. Define
m(k,n} = 10(k - 2) + (n - 3)(3(k — 2) +5) + 17,

and S to be the numerical semigroup with minimal generating set

2n—1

U mk,4) + [0,k - 1].

i=n

Using an analysis similar to that given in Section 2, one can show that every
semigroup in this family is non-symmetric and admits a k x n perfect brick
with

I=(0,1,....k~1) and S — I = (m(k,n), m(k,n+1),...,m(k,2n — 1)).
(3.2) Example: Let k = 3.and n =4. Then
S =< 35,36,37,43,44,45,51, 52,53, 59, 60, 61 > .
If we define I = (0,1,2), then (S, 1) forms a 3 x 4 perfect brick.

Concluding Remarks

This investigation answers a question from [7]. In that paper, the no-
tions of balanced and unitary are introduced for numerical semigroups of
embedding dimension 4, and it is shown that such semigroups are unitary
if and only if they admit a 2 x 2 perfect brick. At the end of that paper,
it is mentioned that it would be worthwhile to investigate if these notions
can be generalized to k x n bricks. Throughout our research into the fami-
lies discovered here we looked for such generalizations, but without any real
progress. However, we still believe that such ideas are worth pursuing.
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